RoseTTAFold
/fs00/software/rosettafold/1.1.0
#BSUB -J RoseTTAFold
#BSUB -q gpu
#BSUB -n 8
#BSUB -gpu num=1
###### Configurie Numpy threads ######
export OMP_NUM_THREADS="$LSB_DJOB_NUMPROC"
export MKL_NUM_THREADS="$LSB_DJOB_NUMPROC"
###### Definition ######
ROSETTAFOLD_DATADIR=/bbfs/data/rosettafold # path to RoseTTAFold data (host)
ROSETTAFOLD_IMAGE=RoseTTAFold-1.1.0.sif # path to RoseTTAFold image (host)
ROSETTAFOLD_APPDIR=/app/RoseTTAFold # path to RoseTTAFold working directory (container)
###### Database ######
UNIREF30_DB=$ROSETTAFOLD_DATADIR/UniRef30_2020_06
BFD_DB=$ROSETTAFOLD_DATADIR/bfd
PDB100_DB=$ROSETTAFOLD_DATADIR/pdb100_2021Mar03
###### Example ######
RUN_ROSETTAFOLD="apptainer run --bind $UNIREF30_DB:$ROSETTAFOLD_APPDIR/UniRef30_2020_06 \
--bind $BFD_DB:$ROSETTAFOLD_APPDIR/bfd \
--bind $PDB100_DB:$ROSETTAFOLD_APPDIR/pdb100_2021Mar03 \
--nv $ROSETTAFOLD_IMAGE"
# For monomer structure prediction (e2e)
${RUN_ROSETTAFOLD} $ROSETTAFOLD_APPDIR/run_e2e_ver.sh $ROSETTAFOLD_APPDIR/example/input.fa output/
# For monomer structure prediction (pyrosetta)
${RUN_ROSETTAFOLD} $ROSETTAFOLD_APPDIR/run_pyrosetta_ver.sh $ROSETTAFOLD_APPDIR/example/input.fa output/
# For complex modeling
${RUN_ROSETTAFOLD} python $ROSETTAFOLD_APPDIR/network/predict_complex.py \
-i $ROSETTAFOLD_APPDIR/example/complex_modeling/paired.a3m \
-o output/ -Ls 218 310
# For PPI screening using faster 2-track version (example input and output are at example/complex_2track)
${RUN_ROSETTAFOLD} python $ROSETTAFOLD_APPDIR/network_2track/predict_msa.py \
-msa $ROSETTAFOLD_APPDIR/example/complex_2track/input.a3m \
-npz output/complex.npz -L1 218